My work in the field of Carotid Revascularisation

Alison Halliday
Professor of Vascular Surgery
University of Oxford

Nucleus member, ESC Council on Stroke

President-elect, European Society for Vascular Surgery

6th January 2017, Prague

CV and Competed Work

Training - General and Vascular Surgery, UK, US, Hunterian Professorship, Royal College of Surgeons Travelling Fellowship, Germany, France, US

Consultant Surgeon (NHS) 1991-2008

Professor of Vascular Surgery 2008 – current

University of Oxford/Oxford University Hospitals 2010 – current

President-Elect, European Society for Vascular Surgery 2016-17

Principal Investigator, Asymptomatic Carotid Surgery Trial-1 (1993-2008)

RCT, 3000 patients, early surgery (CEA) and medical treatment vs medical treatment alone with 10-yr follow up (incorporated into many Guidelines)

Instigator and Lead developer, National Carotid Audit (2000-2010)

20-centre pilot, then National rollout, all UK, carotid surgery data and outcome collection, now National standard, compulsory for all UK surgeons and Vascular Surgery departments

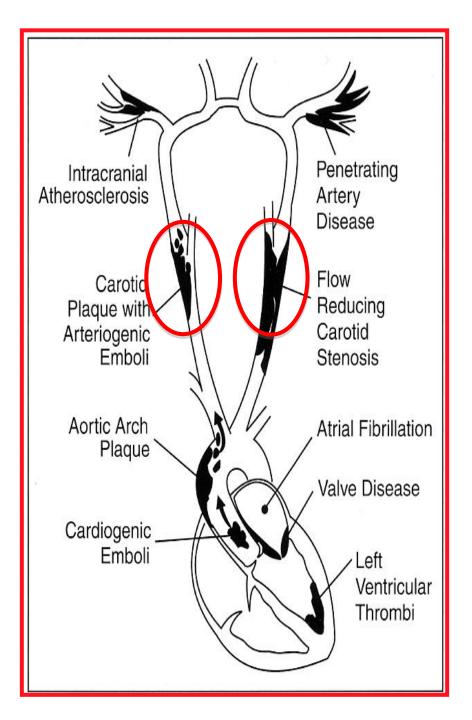
Current work

Asymptomatic Carotid Surgery Trial-2 (ACST-2) 2008-20

RCT, Carotid Endarterectomy (CEA) vs Carotid Stenting (CAS) patients, tight carotid stenosis (no recent ipsilateral symptoms) thought to need revascularisation

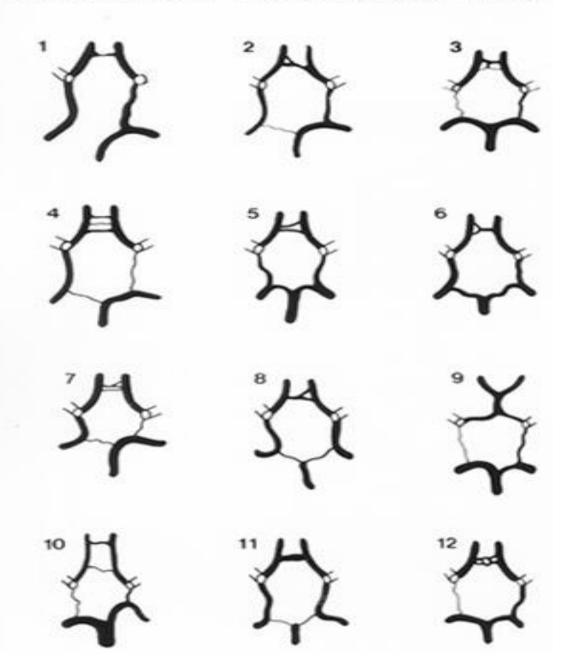
IPD Analysis of ACST-1, ACAS, VA trials 2016/17

5222 patients, 3 European and US trials, completed 2016, Risk model development 2017


Development of Dementia 2016-18

1600 UK and Swedish ACST-1 patients (CEA vs not, 12-22 years after trial entry) Data from hospital, country, patient relatives

Screening data analyses 2015-17


Lifeline Vascular Screening data (4m UK and US adults AAA, Carotid stenosis, AF and PVD

Big Data linkage Pilot 2017 –19 UK Vascular lab carotid data

About 20% ischaemic Strokes are caused by carotid stenosis

Variations In the Circle of Willis

Strokes do not always occur ipsilateral to that tight stenosis!

Lifeline Screening

- Self-funded testing(cost about \$200)
- Includes Carotid, AF, PAD, AAA, BP, Cholesterol
- 8m adults US, UK Ireland, Australia
- Data processed on >3M

- The LLS population is:
 - Older (median age: 65y)
 - Female (~ two-thirds)
 - Caucasian (almost 90%)

Characteristics of participants

	Men (1.1M)	Women (2M)
Age (years)		
<60	36%	32%
60-69	35%	36%
70+	29%	32%
Height, m	1.78	1.63
Weight, kg	91	73
BMI, kg/m ²	28.4	27.7
SBP, mmHg	132	133
Current smoking	8%	8%

Associations between smoking and carotid stenosis and atrial fibrillation

among adults without reported history of CHD or stroke

Unpublished results: not available for reproduction

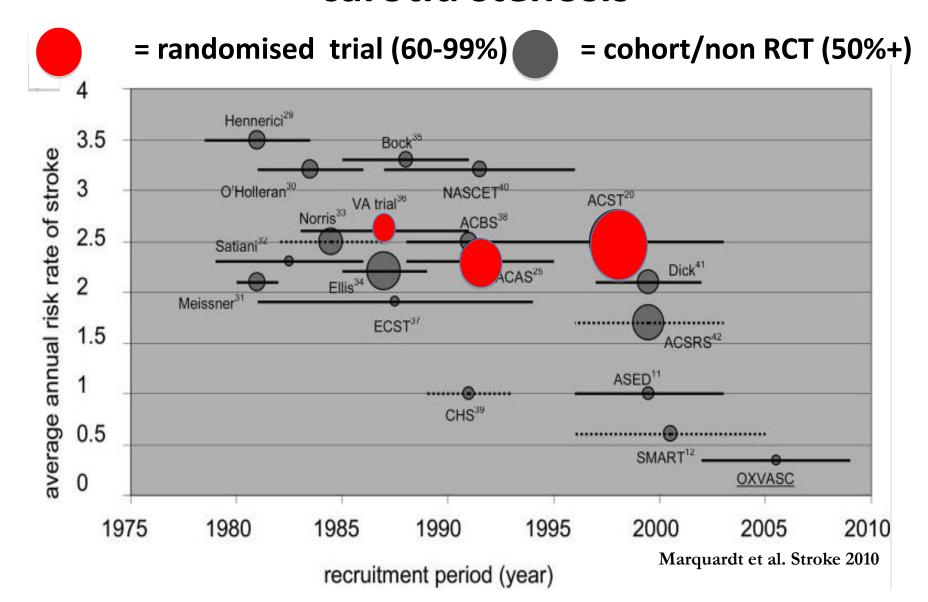
IPD Meta-analysis of VA, ACAS and ACST-1 Trials: 5000 patients randomised to Immediate CEA vs Medical Therapy alone

Alison Halliday, Richard Bulbulia, Peter Rothwell, Richard Peto, Hongchao Pan on behalf of VA, ACAS,

Prevalence of 'serious' carotid stenosis

Systematic review, de Weerd, 2009

Adults over 70 years:


≥70% stenosis ~ 3% women

5% men

≥50% 7% women

12% men

Annual Stroke risk from asymptomatic carotid stenosis

Methods

5,000 individual patients in ACST-1, ACAS and VACS Trials

	VACS	ACAS	ACST-1
Nos. of patients (Immediate vs Deferred)	444 (211 vs 233)	1662 (828 vs 834)	3120 (1560 vs 1560)
Period of randomisation	Apr 83 – Oct 87	Dec 87 – Dec 93	Apr 93 – Jul 03
Date of last follow-up	May 1991	Feb 1997	May 2008
Median (IQR) follow-up year†	4.5 (2.5-6.0)	4.2 (2.9-5.0)	6.1 (3.9-9.1)

+ Median year of follow-up, as measured from the time of entry to that of the first stroke, death, loss to follow-up, or most recent examination

What CEA adds to drug therapy over the next 5-10 years after trial entry?

Statins work: With CEA or without CEA, a statin approximately <u>halves</u> the stroke rate

And CEA works: With a statin or without a statin, CEA approximately <u>halves</u> annual stroke rate

Who benefits and which strokes are prevented?

60-99% asymptomatic carotid stenosis: intervention vs medical treatment – what has changed between the 1990s and the 2010s?

Medical treatments have improved....
But only statins have made a real impact on stroke risk

For truly asymptomatic patients with tight stenosis (60-99%) but no past symptoms and no brain infarcts, annual stroke risk may now be around 1.0%, but for patients with risk factors such as previous symptoms, it may be 2-4%... during 2017 we will report details of a simple model to identify these higher risk patients

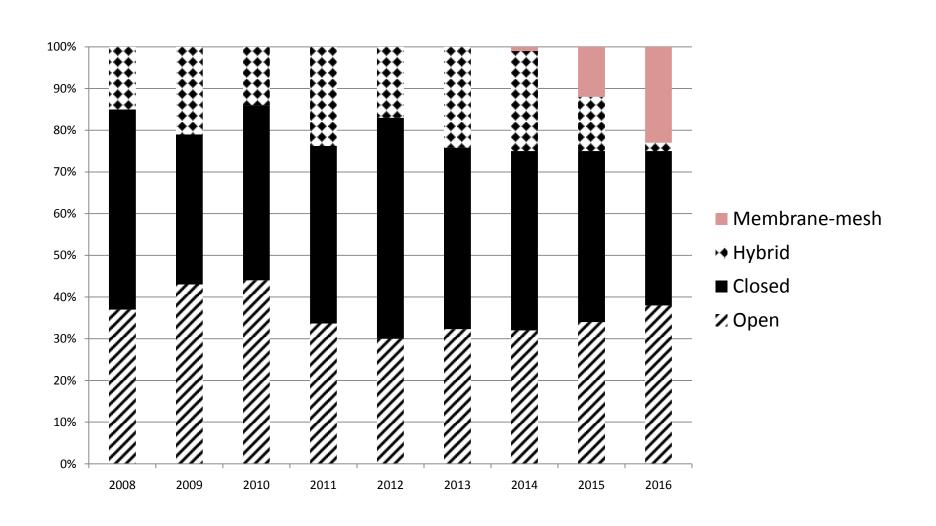
Risks from intervention have also fallen, but a decision to intervene depends on operator skill, proper patient assessment and good medical therapy before any intervention is undertaken

Risk of future Dementia following CEA (or not) in patients with tight asymptomatic stenosis in ACST-1

ACST-2 – A large RCT comparing open and endovascular treatment of severe carotid stenosis

Progress after 2400 patients

For patients thought to require intervention ACST-2 directly compares CEA vs CAS

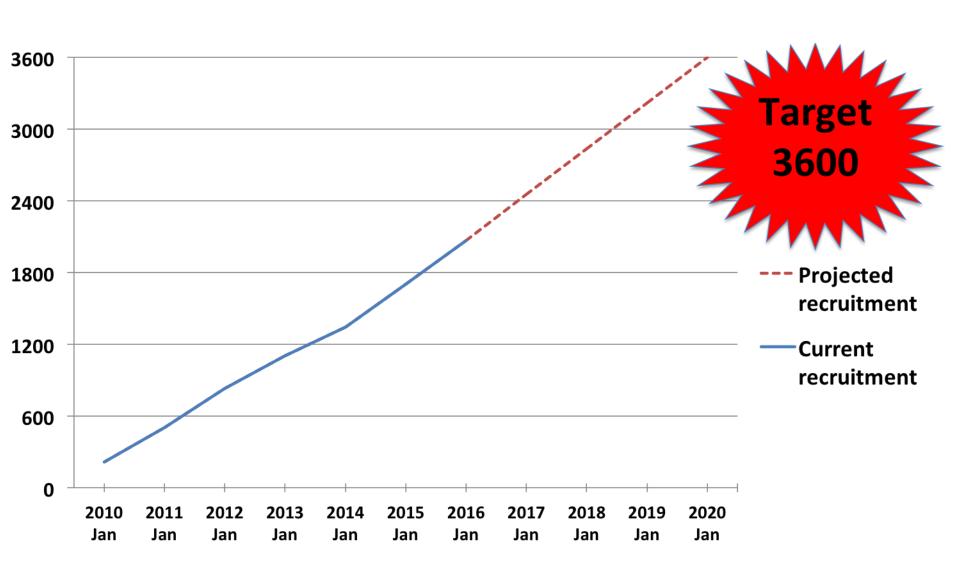


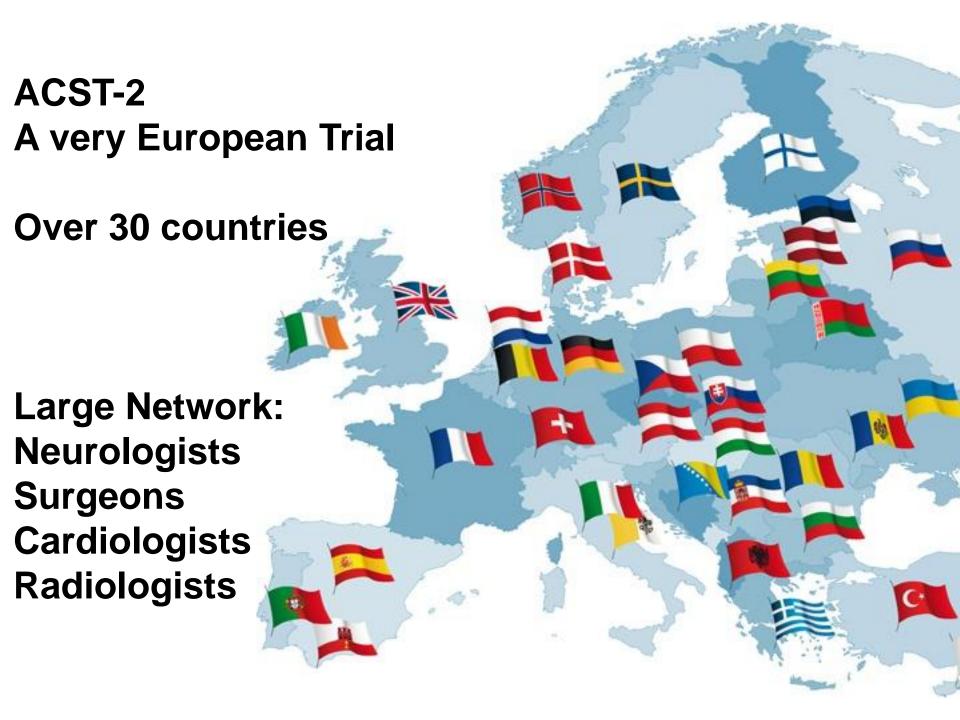
If patient is suitable for both procedures
- then randomise

Long-term follow up is of most importance to compare stroke prevention

Stent type	Name	% used
Closed Stents (410)	Wallstent Xact Adapt	25% 17% 1%
Open (330)	Precise RX Acculink Protégé® RX ViVEXX Zilver	14% 10% 9% 1% <1%
Hybrid (174)	Cristallo Ideale Sinus Carotid RX Medtronic Invatec MER	17% 1% <15 <1%
Membrane	Roadsaver	2%
(32)	CGuard	1%
Total		n = 946

Time trends in Stent use


Type of Cerebral Protection Device	Device Name	% of total
Filter (633)	Emboshield	23%
	Filterwire	19%
	Spider	13%
	Accunet	7%
	AngioGuard	5%
	FiberNet	<1%
	Wirion System	<1%
Proximal occlusion	Moma	15%
(166)	Gore Flow Reversal	3%
Distal balloon	Twin One	<1%
(4)	Viatrac	<1%
None		
(143)		15%
Total		946


ACST-2 procedural hazards much lower than in symptomatic trials (CEA+CAS) and lower than in ACST-1

Disabling and fatal Stroke/MI ≤ 30 days: 1.0% (ACST-2)

Lower than in previous trial of CEA 1.7% (ACST-1)

Current Recruitment - 2400

Work in the field of carotid revascularisation -

Surgeon

European Stroke Networker and Researcher

